시스템 성과 합산2017. 11. 15. 17:33

 

 

 

 

시스템은 4거래일째 거래 없이 쉬고 있습니다.

 

 

HTS를 안켜봐서 모르겠지만 아마도 큰 흐름이 없는것이 아닌가 싶은데요.

 

 

추세라고 할만한 큰 흐름이 나타나면 잘 포착 해주리라 생각하기에 안심이 됩니다.

 

 

오늘은 여행 2일차인데 너무 멀리 나왔는지 하는것이 없는데도 장거리 이동에 따른 여독이 쉽게 풀리지 않네요.

 

 

또 포항에서 진도 규모 5.5의 지진이 발생했다고 하는데 필자가 살고 있는 울산에도 영향이 있었을텐데 별다른 피해가 없었으면 좋겠네요.

 

 

필자는 멀리 나와 있어 피해가 없습니다.

 

 

독자분들도 피해 없기를 바랍니다.

 

 

 

Posted by 투자의神
시스템 03호2017. 11. 15. 17:00

 

 

 

 

Posted by 투자의神
시스템 02호2017. 11. 15. 16:30

 

 

 

 

Posted by 투자의神
시스템 01호2017. 11. 15. 16:00

 

 

 

 

 

Posted by 투자의神
시스템 성과 합산2017. 11. 14. 17:00

 

 

 

 

지난 11월물 옵션 만기일 이후 필자의 시스템은 시스템은 침묵을 지키고 있습니다.

 

 

아직은 때가 아닌것으로 판단하는것 같은데 적절하게 때가 맞으면 거래를 하겠지요.

 

 

그 속을 저도 모르니 믿고 기다릴뿐입니다.

 

 

어제부터 더없이 바쁜 일정을 보내고 있고 약 일주일간은 이곳에 머물 예정이라 진행하던 프로그램의 개발은 모두 HOLD 상태로 두었습니다.

 

 

복귀 후에는 시간적 여유가 좀 될 것 같으니 양해 부탁드립니다.

 

 

시장에 대해서 혹은 시뮬레이터나 무상제작건이나 알고리즘 자동매매 시스템에 대해서도 좋고 다른것도 좋고 궁금한 내용이 있으면 각 카테고리의 해당 게시물에 Comment 많이 남겨주세요.

 

 

Posted by 투자의神
시스템 03호2017. 11. 14. 16:30

 

 

 

 

Posted by 투자의神
시스템 02호2017. 11. 14. 16:30

 

 

 

 

 

Posted by 투자의神
시스템 01호2017. 11. 14. 16:30

 

 

 

 

Posted by 투자의神
시뮬레이션2017. 11. 14. 16:00

 

 

다른이가 매매 로직을 만드는 과정을 본적도 없고 들은적도 없기 때문에 필자는 그 누구로부터도 배움을 청할 수 없었고 그 과정에서 수 많은 시행착오를 겪을 수 밖에 없었는데요.

 


독자분들은 그런 시행착오를 조금이나마 줄일 수 있었으면 하는 바람에서 글을 적습니다.

 


우선 시장에서 발생하는 데이터는 시계열 데이터라고 합니다.

 


모든 데이터에 시간 혹은 날짜값이 매겨지기 때문이고 이 순서를 무시해서는 절대 안되는 데이터이기도 합니다.

 


시간순으로 정리된 데이터를 살펴보다보면 지수나 주가의 등락에 영향력을 주거나 하는 것으로 보이는 인자값들이 보일것입니다.

 


아직은 명확하게 보이는 단계는 아니고 "어?! 이게 연관성이 있는것 같은데?" 정도로 시작하는게 정상이고 맞습니다.

 


그렇다면 그런 인자값을 가지고 매매의 진입과 청산을 판단한다면 성과가 어떻게 나올지 궁금해지겠지요?

 


정확하지는 않더라도 대략적으로 해당 지표(주가, 거래량, 각종 보조지표, 이평선 등 모든 것을 지표로 통칭.)를 이용했을 때 어느정도의 성과가 나올 수 있는지에 대해 간단하게 시뮬레이션 해볼 수 있는 시뮬레이터 프로그램을 만어서 구동하는데 만약 직접 프로그램을 만들 능력이 안된다면 Yes-Trader 등을 이용해보기를 권합니다.

 


사용자가 직접 시뮬레이터 프로그램을 만들게 되면 생각하는 모든것을 프로그램으로 구현하여 시뮬레이션이나 실거래를 할 수 있다는 장점이 있으나 이를 위해 프로그래밍 언어를 배우기에는 시간과 비용이 너무 많이 드는 등의 진입장벽이 매우 X 100 높다는 단점이 있습니다.

 

 

Yes-Trader (예스 트레이더)는 이를 사용하고 편리하게 서비스를 제공하고 있는 장점을 가지고 제공되지 않는 지표가 있거나 복잡한 구조의 시뮬레이션이나 아주 정밀한 시뮬레이션은 할 수 없다는 단점도 가지고 있습니다.

(그래도 어느 정도는 쓸만하고 정확한 값을 찾는 단계가 아니므로 그럭저럭 괜찮을 것으로 생각됩니다.)

 

 

해당 인자값을 사용했을때 대략 어느정도의 손익이 나오겠다는 감이 올테고 그것으로 충분하거나 개선하면 괜찮아질 가능성이 있는것은 그대로 진행하고 성과가 형편 없거나 개선의 여지가 보이지 않으면 여기에서 STOP 하고 다시 각종 지표를 살펴보는 과정으로 돌아가야 합니다.

 

 

(일단 STOP이 아니라 GO를 외친분은 아래를 더 읽어 주세요.)

 

 

이제 어떤 데이터를 이용하면 괜찮은 성과가 나올 수 있을지 어렴풋하게나마 알게 되었으니 조금 더 면밀히 해당 지표를 뜯어 보기로 하겠습니다.

 

 

하나의 지표가 가질 수 있는 값은 상당히 많은데요.

 

예를 들어, 주가라고 하면 몇백원부터 몇백만원까지 아주 많은 경우의 수를 포함하고 있고 거래량은 0부터 몇십억까지 더 많은 경우의 수를 포함하고 있습니다.

 

상대적으로 경우의 수가 조금 적은 또 다른 지표라고 한다면 어떤 보조지표가 0.00부터 99.99까지의 값을 가진다면 경우의 수가 대략 만개쯤 밖에(?) 안되네요.

 

 

이런 지표들을 각 각 어떤 값으로 설정 했을 때 어떤 결과를 도출할 수 있는것인가를 시뮬레이션 해보는 과정이 필요합니다.

 

 

또 다른 시뮬레이션 프로그램을 만들어야 되겠지요?

 

 

1차 시뮬레이션은 간단하게 해본것이라 금방 결과가 나오겠지만 이번에는 한층 처리 해야 될 정보의 양과 경우의 수가 많기 때문에 시간이 제법 걸릴것입니다.

 

짧게는 몇분에서 길게는 몇달이 걸릴 수 있기 때문에 시뮬레이터의 내부 처리 알고리즘이 아주 정교해야 하며 실수가 없어야 귀한 시간을 허비하지 않을 수 있습니다.

 

실제로 필자의 경우 시뮬레이션이 완료 되기까지 4주를 예상하고 3주쯤 실행중인 상황에서 필자의 오타(Typo)로 인해 프로그램의 코드 일부가 잘못 처리되고 있다는 것을 뒤늦게 인지하고 모든 시뮬레이션의 실행을 중단하고 프로그램 코드내 오타를 수정하여 다시 구동한 적도 있습니다.

결과적으로 4주면 될 일을 7주 조금 넘게 걸려서 끝낸 셈인데요.

1시간짜리 작업을 망쳐서 1시간이 더 늘어 2시간이 되거나, 하루짜리가 이틀이 되는것은 큰 타격이 아닐 수 있지만 거의 한달에 가까운 시간을 허비했다고 생각하면 아쉬울 수 밖에 없습니다.

시간은 곧 비용이기도 하니까요.

 

 

2차 시뮬레이션은 지표의 세밀한 값 변화에 따라 최종 성과가 어떻게 변화하는가와 추후 개선의 여지가 있다면 어떤것을 더하거나 빼야 할 지 자세히 알 수 있는 시뮬레이션이 진행되어야 합니다.

 

 

이 아이디어는 (혹은 지표는) 잘 될것 같은데?라는 생각으로 첫번째 시뮬레이션을 건너띄고 두번째 시뮬레이션을 했을 시 성과가 좋으면 상관없지만 그렇지 않다면 더 많은 시간을 허비했다는 생각에 허망하기까지 할 수 있으므로 꼭 단계별 시뮬레이션 수행이 중요합니다.

 

 

필자의 경우 대체로 시장의 구성 요소중 가장 기초적인 데이터인 "가격"을 중점적으로 보는데요.

가격을 처리하는 부분의 알고리즘을 동일하다 하더라도 그 가격에 얼만큼의 주문을 넣을 것이고 시뮬레이션 상에서 얼마나 체결될 수 있을것인가의 수량 또는 운용자금 대비 비율값을 별도의 조건으로써 추가 합니다.

 

 

이렇게 처리 하면 해당 매매 로직을 실제 운용함에 있어서 어느정도의 금액을 투입하는것이 가장 좋을지에 대한 데이터도 같이 알 수 있기 때문입니다.

 

 

2차 시뮬레이션이 끝나면 일련의 로직의 결과값들이 데이터베이스에 저장 될텐데요.

 

 

이 결과를 그대로 사용하면 좋겠지만 조금 더 나은 성과를 얻기 위해서는 손실이 많이 발생할 수 있는 경우들에 대해 필터링을 하는 등의 검수 과정이 필요합니다.

 

 

2차 시뮬레이션의 결과가 몇개 되지 않는다거나 일일이 수동으로 분석해보겠다는 용자분이라면 상관없지만 2차 시뮬레이션의 특성상 지표의 세밀한 값 변화의 갯수만큼이나 결과물은 아주 많은 양인게 정상입니다.

 

 

때문에 2차 시뮬레이션의 결과에서 어떤값을 빼거나 어떤 기준으로 빼기 위해서는 3차 시뮬레이션을 진행해야 합니다.

 

 

2차 시뮬레이션의 결과값이 "아주 많은"이었다면 3차 시뮬레이션은 경우의 수가 훨씬 더 많아졌기 때문에 어마 어마 X 1000 하게 많은 양이 나와야 지극히 정상입니다.

 

 

3차 시뮬레이션이 끝나면 다른것 볼 필요 없고 개선의 여지를 찾을 필요도 없습니다.

 

 

이미 충분한 경우의 수를 대입하여 1, 2, 3차 시뮬레이션을 진행했기 때문에 해당 지표에 대해서는 박사급이 된 것이고 단순히 최정 성과(손익) 순으로 정렬해서 보고 최상위 성과를 낸 로직만 선택하면 될 일입니다.

 

 

예를 들어 A라는 지표를 선택했고 그 지표를 이용해서 해볼 수 있는 모든것을 해보았다면 두번 다시는 그 지표를 쳐다보지 않아도 됩니다.

 

 

여기에서 지표 A는 시장에서 널리 통용되고 있는 주지표 또는 보조지표일수도 있고 사용자가 임의로 여러개의 지표들을 조합하거나 한 것 모두를 포함하므로 시뮬레이션 해 볼만한 지표들은 널리고 널렸다고 할 수 있겠죠?

 

 

물론 경험이 많고 시장을 폭 넓게 이해하고 있다면 많고 많은 지표들중 성과가 좋을 것으로 기대되는 것들을 어느정도 추려내고 범위를 좁혀서 시뮬레이션을 통한 성과 분석을 할 수 있다는 장점이 있고 (장점을 이야기 했으니 단점도 이야기 해야 되겠죠?), 아는게 많은 만큼 해보고 싶은것도 더 늘어나서 일을 멈추지 못하는게 단점이라면 단점이고 필자의 상황이 현재 그런 상황입니다.

 

이미 다수의 시스템을 완성하여 실거래를 하고 있고 또 성과도 보고 있으며 별도로 시뮬레이션 해보고 있는 것들이 있지만 또 언젠가 아이디어가 갑자기 툭 튀어나오면 안해보고는 못 배길겁니다.

아마 잠도 못자고 늘 그 생각만 하게 될테니 차라리 며칠 고생해서 시뮬레이션 해보고 의혹을 풀어버리는게 낫지요.

 

 

3차 시뮬레이션까지 끝나고 나면 정말 시장에서 통용될 수 있는것인가와 직접 만든 자동매매 프로그램상에 오류는 없는지 점검 해보기 위해 소액으로 실거래를 시작해보세요.

 

 

프로그램의 안정성 개선과 오류 수정 그리고 추가 시뮬레이션 과정 등이 합쳐져서 약 6개월 정도는 해보셔야 합니다.

 

 

성과도 괜찮고 프로그램상의 문제도 없다면 메인 계좌로 옮겨서 운용하면 됩니다.

 

 

한가지 당부드리고 싶은 것은,

시뮬레이션은 최대한 많은 데이터를 대상으로 할 수록 상승구간, 하락구간, 횡보구간 등에 대해 공평하게 성과 분석을 할 수 있기에 유의미한 데이터를 도출할 수 있기에 시뮬레이션을 하기 위해서는 필요한 데이터를 확보하는게 급선무이고 1차 시뮬레이션 이후 2차, 3차 시뮬레이션은 Yes-Trader 등으로 할 수 없는 경우가 가능한 경우보다 훨씬 더 많기 때문에 가급적이면 정식으로 프로그래밍 언어를 공부하시라고 말씀 드리고 싶습니다.

 

 

호가창에서 뵙겠습니다.

 

 

Posted by 투자의神
프로그래밍 with C#2017. 11. 5. 09:02

 

 

제목에 시장 재구현과 시뮬레이션을 동의어인 것으로 표현했습니다.

 

 

시뮬레이션을 조금 더 자세히 알아보기 위해 시장 재구현이라는 말을 제 임의로 만든 말입니다.

 

 

우선, 시뮬레이션에 대해 알아 보겠습니다.

 

 

(구글 검색 키워드로 "simulation 뜻' 이라고 입력한 결과)

 

물리적 또는 추상적인 시스템을 모델로 표현하고, 그 모델을 사용해서 실험을 하는 일.

실제로 모형을 만들어 하는 물리적 시뮬레이션과, 수학적 모델을 컴퓨터상에서 다루는 논리적 시뮬레이션이 있음.

공학상의 설계 및 사회 현상 분석 등에 쓰이는데, 방대한 수치 계산을 고속으로 처리하는 실시간(實時間)의 시뮬레이션은 컴퓨터의 이용으로 비로소 가능해졌음.

 

 

물리적인 구현과 논리적인 구현이 있다고 되어 있는데 필자가 하고 있고 또한 독자분들도 하고 계신것이 논리적인 구현입니다.

 

 

투자를 하기에 앞서 수립한 가상의 조건값(예. A하면 B한다. 그러나 C하면 D한다.)이 얼마만큼의 효용성이 있는지

즉, 성과를 낼 수 있는 것인지 검증 해보기 위한 방법인데 물리적인 시간을 거스를 수 없으므로 당시의 상황을 가정하여 생성하는 논리적 프로세서라고 이해 하시면 조금 더 쉽습니다.

 

 

HTS, MTS 등으로 차트를 보고 복기 해보는 과정,

검색식 등을 이용하여 종목들을 찾아보거나 동일한 수익 모델을 기준으로 각각의 투자 성과가 어떠했으리라 추정 해보는 모든 과정이 논리적 시뮬레이션입니다.

 

 

어때요?

참 쉽죠?

 

 

이 시뮬레이션을 저는 시장 재구현이라고 정의 합니다.

 

 

시장을 재 구현하기 위해서 우리가 고려해야 될 요소들이 생각보다 상당히 복잡 다양한데요.

 

 

그러기 위해서는 당시의 모든 시장 데이터들을 확보하고 있어야 하며 시계열 형태로 배치되어 있어야 합니다.

 

 

제가 시장에서 수신받은 데이터를 데이터베이스 서버에 실시간으로 저장하며 데이터들을 수집하고 있는데 그것은 시장 전부의 데이터는 아니고 관심이 있는 특정 부분 위주의 데이터들이고 그 양이 1거래일간 약 2천만건에 이릅니다.

 

 

그리고 확보된 데이터가 수십억건이 넘는데요.

 

 

 

이 데이터들을 안전하게 보관하고 데이터의 이중화, 백업의 이중화가 반드시 필요하며 또 이러한 데이터들을 시장 재구현이 필요할 때마다 빠르게 불러오고 처리할 수 있는 컴퓨팅 머신(Computing Machine)이 필요하기 때문에 일반적인 경우에는 비용 등의 문제로 사실상 불가능합니다.

 

 

소수의 사람만 가능합니다.

 

 

물론 데이터들이 날아가도 크게 신경쓰지 않고 속도도 고려치 않는다면 아마도 몇십만원짜리 PC로도 가능하겠지만 소실되고 나면 다시는 절대!! 구할 수 없는 데이터들을 그렇게 보관한다는게 말이 안되는것이죠.

 

 

일반적인 접근성이 떨어지는 "전문(specialty) 데이터"이기 때문에 그에 맞는 취급을 해줘야 할 필요성이 있습니다.

 

 

시계열 데이터 기반으로 시뮬레이션 하고자 하는 대상에 맞는 데이터를 확보하고 코딩을 시작해야 합니다.

 

 

시계열 데이터를 기본으로 두고 하나씩 순서대로 살펴보며 가상의 조건값에 대한 이벤트를 감지하여 처리 하는게 필요한데 이 부분에서 수행시간을 고려하지 않을 수 없습니다.

 

 

시뮬레이션 하려는 데이터의 갯수가 10000개이고 하나의 데이터를 처리 하는데 1초가 소요된다면 단순하게 보면 10000초만에 끝날 것 같지만 각자가 살펴보려는 매매 로직의 처리 특성이 O(N 3 )이라면 어떻게 될까요?

 

 

무작위로 코딩 해버리면 O(N 3 )은 1억을 초과 해버리기에 처참한 결과에 좌절하게 될지도 모릅니다.

(10000의 제곱은 1억이고, 세제곱은 1조입니다)

 

 

O(N 2)도 상당히 많은 양이죠.

 

 

O(N log N)에 10000을 대입하면 1억에 훨씬 미치지 못합니다.

 

 

매매 로직도 중요하지만 시장 재구현을 위해 시계열 데이터를 처리하고 매매 로직을 대입하는 과정의 수행 속도가 더뎌질수록 그 만큼 기회 비용의 상실됩니다.

시간은 곧 돈이니까요.

 

 

이제 갓 입문한 분들이 이처럼 주먹구구식으로 코딩하여 시장 재구현을 시도 하지만 시간이 제법 많이 소요되더라도 보유한 데이터가 적기 때문에 주먹구구식으로 대충 처리하려고 하는데 필자와 같이 셀 수 없을 정도의 양을 보유하고 있는 시점에 이르게 되면 주먹구구식으로는 평생이 걸려도 하나의 시뮬레이션이 끝나지 않을수도 있습니다.

 

 

시계열 데이터의 수행 횟수의 예측치가 기준에 가까운 O(N 2) 알고리즘의 경우 시간 복잡도 외에도 다른 요소들을 참조해 적당한 시간내에 시뮬레이션이 완료될 수 있을지 판단해야 하는데 이 때 참고 할 수 있는 요소들은 다음과 같습니다.

 

 

1. 시간 복잡도가 시뮬레이션 프로그램의 실행 속도를 제대로 반영하지 못하는 경우

: 시간 복잡도를 계산할 때 상수나 최고차항 이외의 항들은 모두 소거가 되므로 이때 계산된 값과 실제의 수행 시간이 다를 수 있는데 애초에 예상했던 시간의 100배가 소요될 수도 있고 1/100밖에 소요되지 않을수도 있습니다.

 

 

2. 컴퓨터 메모리(RAM) 사용 패턴이 복잡 다양한 경우

 

 

3. 시뮬레이션 프로그램을 코딩한 프로그래밍 언어와 컴파일러의 차이

: 각 언어마다의 특장점이 있겠지만 대체로 C계열의 언어가 다른 언어에 비해 충분히 빠른데도 불구하고 편하다는 이유만으로 굳이 Python이나 Java같은 언어로 수행하거나 최적화 옵션이 꺼져 있으면 시뮬레이션 실행해두고 한 세월 기다려야 할지도 모릅니다.

 

 

4. 구형 PC나 서버를 사용하는 경우

: 일반적인 컴퓨팅 환경에서는 시간 복잡도가 높은 작업을 거의 하지 않으므로 가장 최신의 것과 몇년쯤 전의 것 사이에서는 시간 차이가 거의 없습니다.

예를들어, Internet Explorer 를 실행하여 여러분이 설정해둔 Main Web Page가 완전히 로드되는데까지 차이가 많이 나봐야 1~2초쯤이겠죠.

하지만 시간 복잡도가 높으면 높을수록 시뮬레이션의 수행 속도 차이는 기하급수적으로 벌어질 수 있습니다.

 

 

5. 시계열 데이터의 처리 내부 반복문이 복잡하고 상호호출 등이 발생하는 경우

: 반복문을 통해 보유하고 있는 데이터의 횟수만큼 루프(loop)를 돌아야 하는데 그 반복문 안에서 복잡한 처리와 연산을 해야 한다면 시간은 당연히 많이 소요될 수 밖에 없습니다.

 

 

6. 시계열 데이터의 재배치가 되지 않은 경우

: 데이터는 시간순으로 배치되어 있을수록 유리하며, 실수 계산은 시간이 많이 소요되므로 시간 복잡도가 높아질수록 정수로 변환한 뒤 처리하는것이 유리할 수 있습니다.

 

 

시뮬레이션에서 같은 것을 대상으로 문제 풀이 하더라도 어떤 시간 복잡도를 가지는 알고리즘이냐에 따라 누구는 1시간만에 누구는 100시간만에 누구는 10000시간이 걸려야 풀 수 있으므로 이러한 부분들을 최대한 고려하여 시뮬레이터를 구현하는 노력도 필요하다는 점을 강조 드립니다.

 

 

 

추가내용 :

필자의 경우 시뮬레이션에는 크게 2가지로 나눕니다.

 

 

첫번째,

과연 현재의 아이디어가 성과를 낼 수 있을까?를 확인하기 위한 시뮬레이션

 

 

두번째,

두번째는 첫번째에서 파생되어 범위가 넓은 시뮬레이션인데요.

과연 여러 조건값들중 어떤 값이 최고의 성과를 낼 수 있을까?를 확인하기 위한 시뮬레이션

 

 

첫번째의 경우처럼 단순한 경우의 수와 조건값의 아이디어를 시뮬레이션 해보는 경우라면 아마도 어지간한 컴퓨터에서라도 초 단위 길어야 분 단위에서 시뮬레이션이 끝날 수 있습니다.

 

 

필자의 경우에는 우선 첫번째 시뮬레이션을 한 다음 어느정도 가능성이 보이면 두번째 시뮬레이션을 하는데 위 본문에서 말씀드리는 것은 두번째의 복잡 다양한 경우의 수의 나열 중에서 어떤것이 가장 최고의 성과를 낼 수 있는지 조건값들을 다양화 한 시뮬레이션을 말씀 드린 것입니다.

 

 

개인적으로 첫번째의 경우에는 이미 많은 시뮬레이션을 해보았기 때문에 현재는 조금 더 세밀한 조건값을 찾기 위해 두번째 시뮬레이션을 하고 있다고 이해하시면 되고 아이디어가 어느 정도 정형화가 되어 있는 첫번째 간단한 시뮬레이션을 해본 다음 가능성 여부를 따지고 두번째 시뮬레이션을 진행하시면 됩니다.

 

 

아이디어를 구체화하는 과정이나 첫번째이든 두번째이든 시뮬레이션을 만드는 과정에서 어려움을 겪고 계신 독자분이 계시면 글 남겨 주세요.

 

 

시간이 허락하는 한 최대한 도와 드리겠습니다.

 

 

 

Posted by 투자의神